在石墨上應用振動磨,具有以下特點:?高效性:振動磨的高速旋轉和往返振動,能夠有效地將石墨粉體分散、研磨和粉碎。與傳統的研磨設備相比,使用振動磨可以顯著提高生產效率。?均勻性:振動磨的研磨過程是連續的,可以確保石墨粉體的顆粒大小分布均勻。這對于一些對粉末顆粒度有嚴格要求的應用來說非常重要。?節能:振動磨的高速旋轉和往返振動,能夠在短時間內將石墨粉體研磨得非常細。與傳統的石墨粉碎方法相比,振動磨具有更低的能耗。?環保:振動磨采用封閉式結構,可以有效地減少粉塵的飛揚和污染物的排放,符合環保要求。?易于操作和維護:振動磨結構簡單,操作方便。同時,由于其零部件較少,維護成本也相對較低。?綜上所述,振動磨在石墨應用領域具有高效、均勻、節能、環保、易操作和維護等特點,是一種非常實用的設備。
選擇最適合振動磨的研磨體形狀和材質需要綜合考慮以下幾個因素:?物料特性:不同物料具有不同的硬度、密度、粒度等特性,這些因素都會影響物料在振動磨內的研磨效果。因此,在選擇研磨體形狀和材質時,需要先了解物料的特性,以便選擇合適的形狀和材料。?研磨目的:不同的研磨目的也需要不同的研磨體形狀和材質。例如,如果需要粉碎物料中的雜質,則需要采用硬度高、耐磨性好的材料,如陶瓷、石墨等;而如果需要研磨細粉,則需要采用硬度低、柔韌性好的材料,如橡膠、塑料等。?設備性能:不同的振動磨設備具有不同的振幅、頻率、加速度等參數,因此在選擇研磨體形狀和材質時,需要考慮設備的性能和限制。?操作條件:振動磨的操作條件如溫度、濕度、壓力等也會影響物料的研磨效果。因此,在選擇研磨體形狀和材質時,需要考慮操作條件的影響因素,以保證設備的正常運行。?綜上所述,選擇最適合振動磨的研磨體形狀和材質需要綜合考慮物料特性、研磨目的、設備性能和操作條件等因素。只有在深入了解物料特性和要求的基礎上,才能選擇最合適的研磨體形狀和材質,保證振動磨在物料研磨方面的優勢。
關于納米研磨機的類型從一些相關資料可以看出,納米研磨機主要有以下幾種類型:??????????????????????????????????????????????????????????????????????????????????????????????????????????機械式研磨機:通過機械摩擦來研磨顆粒,如高頻共振研磨機,盤式研磨機等。磁力研磨機:利用磁力吸引顆粒在磁場中進行研磨。超聲波研磨機:利用超聲波的振動作用使顆粒在液體中移動并進行研磨。電化學研磨機:利用電化學反應來驅動顆粒運動并進行研磨。流體動力學研磨機:利用流體動力學原理來推動顆粒在液體中進行研磨,如納米砂磨機等。需要注意的是,這些類型的納米研磨機在具體使用時需要根據所需處理的材料、顆粒大小、顆粒形狀等因素進行選擇。
摘要:本文通過對無機納米粒子的表面進行力化學改性,利用熔融共混的方法制備了聚氯乙烯/無機納米粒子復合材料。研究了納米CaCO_3、納米SiO_2填充聚氯乙烯復合材料中納米粒子的處理方式、處理時間、無機納米粒子含量和粒徑對納米粒子在基體樹脂中的分散形態和界面相互作用的影響及其對復合體系的形態結構、力學性能、熱性能、阻燃性能以及流變性能的影響;并對納米粒子在復合材料中的增韌增強機理進行了初步探索。 SEM、TEM、Molau測試和力學性能測試表明:未處理納米粒子分子間相互作用力大,易團聚成較大的顆粒,在基體中的分散效果不好,界面粘結強度低,不能有效地對聚氯乙烯樹脂進行增強增韌。偶聯劑處理雖能對復合體系的界面粘結強度有所改善,對體系有一定的增強作用,但不能有效地解決無機納米粒子的聚集問題。聚氯乙烯基體樹脂與納米粒子共振磨時,PVC大分子鏈斷裂產生的大分子自由基與表面活化的無機納米粒子之間產生化學鍵合和物理吸附,有效地實現了無機納米粒子在聚氯乙烯樹脂中的良好分散,界面粘結強度增強,使復合體系取得較好的增強增韌效果。 振磨處理時間對復合體系的綜合力學性能有較大的影響,納米SiO_2共混體系的振磨處理時間為6小時,納米CaCO_3的振磨處理時間為4小時,此時PVC/SiO_2和PVC/CaCO_3納米復合材料的拉伸強度、斷裂伸長率和抗沖擊強度達到極大值。與純PVC相比,振磨處理的納米SiO_2和納米CaCO_3的添加量為3phr和8phr時,復合體系的沖擊強度分別提高181%和235%,拉伸強度也有提高。納米SiO_2對復合體系的增強效果好于納米CaCO_3,而增韌效果略小于納米CaCO_3。 拉伸試樣和沖擊斷面掃描電鏡照片顯示:未經力化學處理填充復合體系中,納米粒子以較大的聚集體存在,在應力作用下以界面脫粘為主要增韌途徑;而 摘要 振磨處理體系中納米粒子分散均勻,粒徑較小,振磨過程中產生的物理吸附與 化學鍵合形成較強的界面粘結,在應力作用下,產生界面脫粘與誘導剪切帶和 銀紋產生,納米粒子外層的大分子產生大的塑性變形,吸收大量的能量;同時, 界面層體積分數增加,界面層能有效地傳遞應力,復合體系的強度和韌性得到 提高。 與未處理和經偶聯劑處理的納米粒子填充PVC體系相比,經力化學處理的 納米粒子填充PVC體系的儲能模量、損耗模量、彎曲模量、彎曲強度、極限氧 指數、玻璃化溫度和熱穩定均得到明顯改善。經振磨處理的納米CaC仇替代彈 性體增韌劑CPE制得的PVC異型材的拉伸強度提高了gMPa,模量提高,尺寸穩 定性得到改善。為高強度高韌性PVC化學建材專用料的開發提供了理論依據。收起關鍵詞:納米CaCO_3 納米SiO_2 PVC 增強增韌 力化學DOI: 10.7666/d.y532773
摘要:乙醇鈉等是有機合成工業常用的強堿,但存在腐蝕嚴重、副反應多、產品分離復雜、收率較低等缺點,很多有機合成工業改用碳酸鹽尤其是碳酸鉀。但由于碳酸鉀堿性較弱,其參與的化學反應具有高溫、高壓、反應時間長等缺點。由于特殊的物理、化學性能,納米材料的制備及其在有機合成中的應用成為近年來的研究熱點,但納米碳酸鉀的制備及其在有機合成中的應用研究未見報道。本論文目的是制備納米碳酸鉀,取代傳統強堿,應用于有機合成反應,實現有機合成的綠色化。主要研究內容和結果如下: 1.采用高頻共振研磨機制備納米碳酸鉀,對影響納米碳酸鉀粒徑的因素進行了考察。結果表明,濕法研磨比干法研磨制備的碳酸鉀粉體粒徑更小,質子性有機溶劑利于濕法研磨制備碳酸鉀粉體,若加入少量月桂酸,碳酸鉀粉體的粒徑會進一步降低。在無水乙醇中加入碳酸鉀物質的量0.3%的月桂酸,可以制備平均粒徑為98nm的納米碳酸鉀,其中小于100nm的納米碳酸鉀顆粒占75%。測試表明,在質子性有機溶劑中納米碳酸鉀表現出較強的堿性,可以取代乙醇鈉等強堿促使丙二酸二乙酯與芐基氯進行烴基化反應。 2.以納米碳酸鉀取代乙醇鈉等強堿,研究了活潑亞甲基化合物與鹵代烴在非水有機溶劑中的烴基化反應,考察了反應的不同影響因素。結果表明,質子性有機溶劑利于反應的進行;不同的底物和鹵代烴,反應活性有差異,對于Br,Cl-二鹵代烷烴,活潑亞甲基化合物可以與溴代烴發生選擇性烴基化反應。在無水乙醇中50-80℃反應,活潑亞甲基化合物的單烴基化產品收率為82-90%,高于乙醇鈉法的收率。 3.以納米碳酸鉀取代乙醇鈉等強堿,研究了雙酚A等二羥基酚類化合物與鹵代烴在非水溶劑中的Williamson反應,考察了反應的不同影響因素。結果表明,質子性有機溶劑利于反應的進行,在質子性有機溶劑中雙酚A等酚類化合物的兩個羥基分步與鹵代烴進行反應,與傳統強堿法不同。在無水乙醇中,控制適當物料比,單酚基醚化合物收率在88%以上,二酚基醚化合物收率在95%以上。在無水乙醇中合成了雙酚A液體環氧樹脂,環氧值為0.4267-0.5324mol/100g,有機氯含量為0.088-0.372%,達到了工業品的技術指標,克服了傳統工藝環境污染嚴重、物料消耗高等缺點。 4.以納米碳酸鉀取代氫氧化鉀等強堿,研究了活潑亞甲基化合物與二硫化碳在非水溶劑中的縮合反應,考察了反應的不同影響因素。結果表明,質子性有機溶劑利于反應的進行,底物的結構對反應有顯著的影響。在無水乙醇中30-40℃反應,產物烷基化后的產品收率為83-90%,高于強堿法的收率。以異硫氰酸甲酯和硝基甲烷為主要原料,合成了N-甲基-1-甲硫基-2-硝基乙烯胺,產品收率由傳統工藝的50%提高到85%。 5.以納米碳酸鉀取代乙醇鈉等強堿,研究了非水溶劑中活潑亞甲基化合物的非均相肟化反應,考察了反應的不同影響因素。結果表明,質子性有機溶劑利于反應的進行,底物和反應溫度對反應影響顯著。在無水乙醇中10-20℃反應,產品收率為81-92%,與乙醇鈉法相當,但產物的分離更簡單。展開關鍵詞:納米碳酸鉀 烴基化反應 Williamson反應 肟化反應 縮合反應
利用高頻共振研磨機生產石墨微粉、納米石墨石墨是碳質元素結晶礦物,六邊形層狀結構。石墨在我們的日常生產中起到了無比重要的作用,在化工、輕工業等領域有著廣泛的應用。石墨已成為高科技領域中新型復合材料的重要原料,在國民經濟中具有重要的作用。北京開源多邦科技科技公司根據石墨的特點,研發出利用高頻共振研磨機生產石墨粉、納米石墨的工藝和設備。上世紀50年代已經采用振動球磨機粉碎研磨石墨,用振動球磨機粉磨出來的石墨細粒子片、斷口整齊、而且表面光滑。石墨微粒的片層越薄越大,在應用中石墨微粉的性能越好。北京開源多邦在振動球磨機的基礎上研發的高頻共振研磨機性能上更優于振動球磨機。是國內唯一生產高頻共振磨機的廠家。在生產石墨粉體時,選擇粉磨設備對微粉石墨性能的影響很大。即使粒度接近的石墨微粉,由于顆粒表面和形狀的不同,在使用性能上會有很大的差別。所以在選擇粉磨石磨設備時不僅要求石墨達到規定的粒度而且還要考慮到石墨粉磨機械的對石墨性能的影響,才能滿足石墨產品性能要求。北京開源多邦公司用于粉磨石磨的高頻共振研磨機在振動力和振動頻率更適合生產性能優越的石墨微粉和納米石磨粉體。高頻共振研磨機與其他設備不同,他的粉碎研磨過程是各種撞擊、剪切和擠壓復合在一起,共振磨中的撞擊力是數倍重力加速度的碰撞,而且是高頻率的,是短、頻、快的碰撞、擠壓和剪切,這種復雜的作用力與振動的頻率和振幅密切相關,同時物料的顆粒大小和硬度也有關系。這會是比其它碾壓設備的細粉量高,粒度的級配也不同。同時具備顆粒整形的作用,使粉體顆粒表面更規則,沒用棱角更光滑,激發石磨顆粒的活性。另外高頻共振磨中剪切力的特點不同于其他設備中的剪切摩擦力,共振磨中的剪切力是與碰撞擠壓同時作用的,作用的角度,作用里的大小都是變化的,而且是高頻次的。所以高頻共振研磨機對石墨這種具有層級結構的物料有剝片的作用,同時發熱量小。干法研磨和濕法研磨都可也做石磨微粉和納米石磨。而卻工藝簡單,生產成本低,投資見效快。?
高頻共振研磨機原理GZM共振磨機是是北京開源多邦公司歷經二十年潛心打造的超細磨粉機。具有卓越的節能和超細等技術優勢, GZM共振磨機研磨1噸物料可以節能50%-70%,細度從200目到20000目任意可調。同時具有分散、改性、顆粒圓整的功能。廣泛應用于礦物磨粉、超細水泥、工業固廢處理、超細粉、納米研磨等領域。振動是宇宙普遍存在的一種現象,在工程技術領域中,振動現象也比比皆是。兩個振動頻率相同的物體,其中一個物體振動時能夠讓另外一個物體產生共振。產生共振時的振動能量是最大的,通常情況下在機械設備中共振是有害的,是要避免產生共振的。但在振動設備中有效利用共振會帶來意想不到的益處。 開源多邦共振磨機是基于高頻共振理論設計的超細磨粉機。多邦共振磨機采用高頻振動器,在接近共振頻率的情況下產生共振。研磨介質及物料以同頻率進行三維圓頻振動。振動能量由研磨筒傳入筒內,并在筒內產生高速旋流能量場,能量場的加速動力最大達到45g(球磨機動力強度1g)。研磨介質與物料在振動中碰撞擠壓研磨,同時整體又沿筒壁做回轉運動。由于離心力的作用,磨筒內中心區的介質與物料又由內向筒壁擠壓,形成離心力場。介質與物料在雙重力場的作用下產生渦流狀不規則運動。物料在運動中受到高于激振頻率幾十倍的沖擊、剪切、擠壓、研磨作用,不斷細化分解,最終得到微米級或納米級顆粒。技術特點:節能50%: 共振研磨機的特點是用較小的振動力可獲得較大的振動能量,(理論上頻率比等于1時振動能量最高)因而能耗甚至可以達到其它設備的十分之一。共振研磨機是具有顛覆意義的產品,僅節能一項即可為企業創造上百萬的利潤。對國家的節能、環保政策有重要意義。粒度細:由于振動頻率高,振動力強,沖擊碰撞擠壓研磨作用復雜的高頻能量的輸入(振動強度可以達到45g),產生機械化學作用,可以使分子間的化學鍵充分斷裂,或改變分子團結構,可以高效率的細度細而均勻的粉體顆粒。磨耗低:由于渦流能量場與離心力場方向相反,減少了介質與筒壁的直接研磨。碰撞的幾率增加,表面摩擦的幾率減少。因此磨耗指數小,同時產生的熱量少。適用性強:可以磨高硬度的物料,也可以磨韌性、纖維性的物料。可以干法研磨也可以用做濕法研磨。可以實現冷凍、真空、惰性氣體保護等特殊研磨。適用性共振研磨超微粉技術的適用性廣泛,可滿足對各種礦石、煤炭、工業廢渣、水泥、土壤、陶瓷、植物纖維、醫藥、食品等多行業多領域的研磨要求。粉煤灰通過共振磨機超細改性后,可以應用到各種制品中,添加量大幅度提高。如水泥、陶粒、橡膠,裝飾板材等。利用共振磨機強大的磨細和表面改性的能力,生產S105、S115超細礦渣微粉,與石膏、鋼渣等混合研磨生產全固廢混凝土。節能一半,產量增加一倍。石墨、石墨烯等利用共振磨機的層間剝離的效果研磨超細或納米級產品。納米研磨是開源多邦共振磨機的優勢。濕法干法都可以進行納米研磨。相對高濃度、大容量濕法研磨。在工業生產中可以采取間斷式,也可以連續式生產。可以外接分級設備和收料設備。多邦共振磨機打破了原有超細磨粉設備產量小、成本高的瓶頸。每小時產量可以達到10-40噸。耗電量將降至原來的十分之一。節能降耗意義巨大。多邦共振磨機以其獨特的超微超細和節能的特點,成為不可替代的超細磨機。